THE CANONICAL FORM OF INVOLUTARY FUZZY MATRICES
نویسندگان
چکیده
منابع مشابه
Properties of Central Symmetric X-Form Matrices
In this paper we introduce a special form of symmetric matrices that is called central symmetric $X$-form matrix and study some properties, the inverse eigenvalue problem and inverse singular value problem for these matrices.
متن کاملthe use of appropriate madm model for ranking the vendors of mci equipments using fuzzy approach
abstract nowadays, the science of decision making has been paid to more attention due to the complexity of the problems of suppliers selection. as known, one of the efficient tools in economic and human resources development is the extension of communication networks in developing countries. so, the proper selection of suppliers of tc equipments is of concern very much. in this study, a ...
15 صفحه اولThe exponential functions of central-symmetric $X$-form matrices
It is well known that the matrix exponential function has practical applications in engineering and applied sciences. In this paper, we present some new explicit identities to the exponential functions of a special class of matrices that are known as central-symmetric $X$-form. For instance, $e^{mathbf{A}t}$, $t^{mathbf{A}}$ and $a^{mathbf{A}t}$ will be evaluated by the new formulas in this par...
متن کاملDetermining the order of minimal realization of descriptor systems without use of the Weierstrass canonical form
A common method to determine the order of minimal realization of a continuous linear time invariant descriptor system is to decompose it into slow and fast subsystems using the Weierstrass canonical form. The Weierstrass decomposition should be avoided because it is generally an ill-conditioned problem that requires many complex calculations especially for high-dimensional systems. The present ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Chungcheong Mathematical Society
سال: 2014
ISSN: 1226-3524
DOI: 10.14403/jcms.2014.27.4.615